A Symmetry-Breaking Theory of False Pop-Out

Kimberley D. Orsten ${ }^{1}$, Mary C. Portillo ${ }^{2}$, and James R. Pomerantz ${ }^{1}$
${ }^{1}$ Rice University, Houston, Texas; ${ }^{2}$ University of Houston-Downtown

Question: Because the 'quadrants' share a border, does FPO occur as a result of the ambiguity of the display itself?

Answer: After testing different degrees of separation ${ }^{\text {A }}$, FPO (calculated via our metric ${ }^{\mathrm{B}}$) was not eradicated, only reduced

No main effect of separation $(p=0.14)$. The original version differed only from the 2% condition, and only before correction.

The Rectangle Principle: The dot that breaks the rectangle's symmetry is the most qualified FPO candidate.

Using the Rectangle Principle to predict the FPO quadrant in onsquare displays resulted in near perfect correlations with actual FPO quadrants.

Conclusions and future directions

- The evidence supports the notion that the general principle underlying False Pop-Out is one of symmetry breaking or pattern breaking of elements, and that Pop-Out is one of symmetry breaking or pattern breaking of elements, and that
increasing distance between elements does lower FPO, but not significantly. This principle is likely to be successfully extended to other types of displays.
oThe Square Principle: When the odd dot busticates (i.e., breaks the symmetry of) an implied "square", very little FPO results.
- When the odd dot falls on the border of (i.e., does not clearly busticate) the square, an alternative shape - the rectangle - is present in the display, and is clearly busticated.
- The Rectangle Principle: The busticated rectangle seems more salient than the potential square, as it consistently drives subject responses.
oThis does not explain the portion of FPO still occurring in off-square displays, which is currently being addressed via the generation of new sets of prediction scores (e.g. relative dot proximities, and a more exhaustive search of all displays for all possible, alternate, busticated configurations).

