

Introduction

Traditional pop-out with basic features

• Basic feature discrimination produces pop-out. • Conjunction search is inefficient, taking more time.

But groupings/conjunctions can still retain salient features Certain conjunctions can be as easily discriminated as

black is from white.

Grouping/conjunctions can sometimes give way to incorrect discriminations: False Pop-Out (FPO)

Design & Methods

False Pop-Out in an Odd Quadrant Visual Search Task Kimberley Orsten, Mary Portillo, and James Pomerantz, Rice University, Houston, Texas

- Participant comments collected.

o 4 blocks: • All displays 1x per block

Display Data

Frequency distributions of RTs (above) and accuracies (below) for all displays. Displays with the lowest accuracies (circled below) should contain FPO.

• More dramatic error distributions with no feedback: an error quadrant would sometimes receive more responses than the correct quadrant.

oTo avoid dealing with 288 different displays, displays were grouped into rotation and reflection sets, where many/most configural relationships were invariant.

Reflections and Rotations

Participant feedback

- "I tried to visualize a box with 3 dots that were aligned in a L shape"
- "I tried to make a square of the dots, and the one that didn't fit was odd."

The "Square"

 The odd dot always fell either on the border of. or inside/outside of the "square" implied by three dots forming an isosceles right triangle.

Results

 Two separate patterns of performance can be seen in both reflection and rotation sets, with the same percentage point difference in accuracies.

○ Need to understand why this happened – what makes some displays harder?

Prediction with the square

• If all displays in a reflection/rotation set were in/out, it was one of the easy sets (see set accuracies on the left).

 If any displays in a reflection/rotation set were border displays, it was one of the hard sets.

 The visual system looks for order and symmetry, so perhaps a 'best-fitting' square is found: if the odd dot falls on the border of this square, it is not clearly symmetry breaking, so the display becomes harder.

The "Square" vs the "Rectangle"

• The square helps predict which displays are more difficult, but does not explain why the error "clumps" onto one wrong quadrant. That's a job for...the "rectangle"!

 When the square cannot be used to resolve the display, the rectangle can, and the "clump" of error falls on the dot that 'busticates' the rectangle.

> • The data support the idea that groupings/conjunctions of features can be more salient than the basic features themselves. • False Pop-Out in this paradigm is attributable to the grouping of elements in a

display across quadrants.

• We speculate that future research will reveal that the general principle underlying False Pop-Out is one of symmetry breaking or pattern breaking in a stimulus.

do it? Nature Reviews: Neuroscience, 5, 1-7.

Further Analyses

Conclusions

• When a stimulus 'busticates' (i.e., falls clearly inside or outside of) the formation of an implied "square", the display is resolved correctly. • If the odd stimulus is seen as 'busticating' the competing "rectangle", False Pop-Out occurs.

•Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they

References

oPomerantz, J. R. & Portillo, M. C. (in press). Grouping and Emergent Features in Vision: Toward a Theory of Basic Gestalts. Journal of Experimental Psychology: Human Perception and Performance.

oPomerantz, J. R., & Portillo, M. C. (2004). False Pop-Out. Paper presented at the Annual Meeting of the Psychonomic Society. • Treisman, A., & Paterson, R. (1984). Emergent features, attention and object perception. Journal of Experimental Psychology: Human Perception and Performance, 10(1), 12-31.